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Abstract

Determination of a spectral (i.e. frequency dependent) finite element of a helix is the focus of this communication.

The helix is treated as straight, linear elastic element, exhibiting coupling of axial with torsional responses. We derive

explicit forms of all the coefficients of the stiffness matrix and plot their dependencies on the frequency and the

parameter describing the said coupling. In general, the growth of that parameter leads to a progressively denser

occurrence of the resonances of both axial and torsional motions.
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1. Background

To a mechanician, a helix is a structural element coupling axial and torsional responses. This comes

about through some kind of a helically-wound microstructure, such as in the very well known wire ropes,

Fig. 1. The book by Costello (1997) discusses the latter subject extensively, albeit in the static setting. The

said coupling is expressed by two constitutive equations
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F ¼ A1e þ A2s; M ¼ A3e þ A4s; ð1Þ
where F is tensile force and M is torque, while e is axial strain and s is angle of twist per unit length.

Furthermore, A1, A2, A3, A4 are constitutive constants dependent on both the rope material and con-

struction. These constants are necessarily positive, and also these relations hold
A2 ¼ A3; A1A4 � A2A3 > 0: ð2Þ
Notably, there are various other examples of helices in engineering and in nature, but they are all char-

acterized by the same equation system as (1). The equations of motion of a helix, referred to the unstressed

rope length and in the absence of body forces, become
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Fig. 1. A wire rope structure (left) shows the coupling of axial and torsional responses, typical of a helix.
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Here m and J are, respectively, mass and mass moment of inertia per unit unstressed length. Substituting

Eq. (1) into (3), the equations governing coupled extensional–torsional oscillations of wire rope become
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2. Spectral stiffness matrix

Let us now consider harmonic motions according to:
uðz; tÞ ¼ ûðx;xÞeixt; hðz; tÞ ¼ ĥðx;xÞeixt; ð5Þ

where x is the frequency, and the hat stands for a quantity in the frequency space (Doyle, 1991; Ostoja–

Starzewski and Woods, 2003). Now, of interest is the derivation of a spectral stiffness matrix expressing a

connection between the kinematic and dynamic quantities at both ends of a helical element:
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Here the subscripts 1 and 2 of F and M denote the left and right ends of the rope, respectively.

The derivation of the spectral stiffness matrix follows these steps. First, substituting Eq. (5) into Eq. (4)
one obtains:
A1
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ox2
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ox2

¼ �mx2û; A3

o2û
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þ A4

o2ĥ
ox2

¼ �Jx2ĥ: ð7Þ
To solve Eq. (7) we consider:
ûðx;xÞ ¼ ueikz; ĥðx;xÞ ¼ heikz: ð8Þ

Here, u and h are constant wave amplitudes, and k is the wave number. As shown in (Samras et al., 1974),

there are two wave speeds c1 and c2
c21;2 ¼
2ðA1A4 � A2A3Þ

ðA1J þ A4mÞ � ½ðA1J � A4mÞ2 þ 4mJA2A3�1=2
; ð9aÞ
while the ratios R1 and R2 of torsional to extensional oscillations’ amplitudes are
R1;2 ¼
h
u
¼

ðmc21;2 � A1Þ
A2

: ð9bÞ
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with this, the solution for extensional–torsional oscillations of wire rope in terms of trigonometric functions

becomes
ûðx;xÞ ¼ U1 sinðk1xÞ þ U2 sinðk1ðL� xÞÞ þ U3 sinðk2xÞ þ U4 sinðk2ðL� xÞÞ ð10aÞ

ĥðx;xÞ ¼ R1 U1 sinðk1xÞ½ þ U2 sinðk1ðL� xÞÞ� þ R2½U3 sinðk2xÞ þ U4 sinðk2ðL� xÞÞ�: ð10bÞ

In the above, U1 through U4 are arbitrary constants. Thus, in effect, there are two waves: a predominantly

extensional wave traveling at a speed c1, and a predominantly torsional wave traveling at a speed c2. Next,

by taking the boundary conditions as
uð0Þ ¼ û1 uðLÞ ¼ û2 hð0Þ ¼ ĥ1 hðLÞ ¼ ĥ2; ð11Þ

and substituting (11) into (10) we find
0 sinðk1LÞ 0 sinðk2LÞ
sinðk1LÞ 0 sinðk2LÞ 0

0 R1 sinðk1LÞ 0 R2 sinðk2LÞ
R1 sinðk1LÞ 0 R2 sinðk2LÞ 0

2
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with the constants in terms of nodal deformations being
U1

U2

U3
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ðR2 � R1Þ

ðû2R2 � ĥ2Þcscðk1LÞ
ðû1R2 � ĥ1Þcscðk1LÞ
�ðû2R1 � ĥ2Þcscðk2LÞ
�ðû1R1 � ĥ1Þcscðk2LÞ
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Now, differentiating Eq. (10) with respect to x, and using Eqs. (1) and (13), we find
bF1 ¼
�1

ðR2 � R1Þ
f
h

� k1R2E1 cotðk1LÞ þ k2R1E2 cotðk2LÞgû1 þ k1R2E1cscðk1LÞf � k2R1E2cscðk2LÞgû2

þ k1E1 cotðk1LÞf � k2E2 cotðk2LÞgĥ1 þ f � k1E1cscðk1LÞ þ k2E2cscðk2LÞgĥ2

i
ð14Þ
where we replaced U1 through U4 according to (13) and introduced
E1 ¼ A1 þ A2R1; E2 ¼ A1 þ A2R2; E3 ¼ A2 þ A4R1; E4 ¼ A2 þ A4R2: ð15Þ
Proceeding in the same fashion for bF2, bM1, and bM2, we determine the four-by-four spectral stiffness

matrix of (6) as follows:
K ¼ 1

R2 � R1

k1R2E1 cotðk1LÞ � k2R1E2 cotðk2LÞ �k1R2E3cscðk1LÞ þ k2R1E4cscðk2LÞ
�k1R2E1cscðk1LÞ þ k2R1E2cscðk2LÞ k1R2E1 cotðk1LÞ � k2R1E2 cotðk2LÞ
k1R2E3 cotðk1LÞ � k2R1E4 cotðk2LÞ �k1R2E3cscðk1LÞ þ k2R1E4cscðk2LÞ
�k1R2E3cscðk1LÞ þ k2R1E4cscðk2LÞ k1R2E3 cotðk1LÞ � k2R1E4 cotðk2LÞ

2
66664
�k1E1 cotðk1LÞ þ k2E2 cotðk2LÞ k1E1cscðk1LÞ � k2E2cscðk2LÞ
k1E1cscðk1LÞ � k2E2cscðk2LÞ �k1E1 cotðk1LÞ þ k2E2 cotðk2LÞ

�k1E3 cotðk1LÞ þ k2E4 cotðk2LÞ �k1R2E3cscðk1LÞ þ k2R1E4cscðk2LÞ
k1E3cscðk1LÞ � k2E4cscðk2LÞ �k1E3 cotðk1LÞ þ k2E4 cotðk2LÞ

3
777775: ð16Þ
Symmetry of the stiffness matrix requires that, for example k41 ¼ k14, and so, by comparing these com-

ponents, we note these implications
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R2E3 ¼ �E1 ) R2ðA3 þ A4R1Þ ¼ �ðA1 þ A2R1Þ ð17aÞ

and
R1E4 ¼ �E2 ) R1ðA2 þ A4R2Þ ¼ �ðA1 þ A2R2Þ: ð17bÞ

One can easily verify that Eqs. (17a) and (17b) hold for arbitrary values of A1 through A4.
3. Conclusions

• Given the above formulas, in Fig. 2 we now plot all four coefficients k11, k12, k13, k14 in function of the

helical coupling parameter A2 ¼ A3 at one fixed frequency: x ¼ 40 kHz. Note that these coefficients cover

all the distinct dependencies of the spectral stiffness matrix on x. Evident here is the progressively denser

location of ‘hills’ and ‘valleys’––indicative of the occurrence of resonance––with the coupling increasing.

To display the entire dependence of k11 through k14 on A2 ¼ A3 and x, we next plot Figs. 3–6. Overall,
these kij’s appear as irregular wavy surfaces, but, for any fixed frequency, there is the same trend as al-

ready shown in Fig. 2.

• Taking A2 ¼ A3 ¼ 0 (absence of the coupling effect) and partitioning the four-by-four spectral stiffness

matrix into four two-by-two sub-matrices as
Fig. 2. Dependence of spectral stiffnesses k11, k12, k13, and k14 on the axial–torsional coupling.



Fig. 3. Dependence of the spectral stiffness k11 on frequency and axial–torsional coupling.

Fig. 4. Dependence of the spectral stiffness k12 on frequency and axial–torsional coupling.

Fig. 5. Dependence of the spectral stiffness k13 on frequency and axial–torsional coupling.
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Fig. 6. Dependence of the spectral stiffness k14 on frequency and axial–torsional coupling.
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� �
2
664

3
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we see that the first and second sub-matrices on the diagonal represent the spectral stiffness matrices of a
straight bar under a pure axial and torsional load, respectively, with the two off-diagonal sub-matrices

being zero identically. As A2 ¼ A3 increase from zero up, two sub-matrices on the diagonal get modified

and two off-diagonal sub-matrices (equal to each other due to the already mentioned symmetry) come

into existence.

Related recent work has focused on harmonic waves in thermoelastic helices with either parabolic or

hyperbolic heat conduction (Ostoja-Starzewski, 2003). In general, both mechanical waves (axial and tor-

sional) are speeded up and damped as the thermoelastic coupling constant grows.
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