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Under consideration are helices made of linear elastic and viscoelastic materials,
henceforth called elastic and viscoelastic helices. While the effective (macro level)
mechanical response of any helix exhibits coupling of axial with torsional
responses, of interest in this study is the derivation of that response from
mechanics of a single helical strand (micro level). First, using the earlier results
of Costello [Theory of Wire Rope (Springer, New York, 1997)], we develop
explicit forms of all the effective constitutive coefficients of a linear elastic helix
and plot their dependencies on the geometry and material constants of the strand.
Next, using the correspondence principle of viscoelasticity, we derive differential
equations of a helix at the macro level by considering three types of viscoelastic
models of the strand: Kelvin, Maxwell, and Zener. In general, the helix macro
level linear viscoelastic response is different in type (and more complex) from that
of the viscoelastic material at the micro level. It is only in the singular case of the
strand material’s Poisson ratio equal to zero that the type of viscoelastic response
is qualitatively the same (i.e. governed by the same order differential equation) as
the viscoelastic response of the strand at the micro level. Consequently, direct
viscoelastic generalizations of effective constitutive equations of helices, not based
on analyses such as those presented here, are likely to be invalid.

1. Background

Helically wound fibres or wires constitute a wide class of important engineering
components. It is well known that a major advantage of such elements is their
capacity to support large axial loads with comparatively small bending or torsional
stiffness. Some of the applications often require a quantitative evaluation of the
relevant mechanical parameters. Two important fields of application are cables
and overhead electrical conductors.

In recent years, considerable progress has been made in the development of
models to predict the response of a helix or any helically wound bundle like a
wire rope. Since there are several parameters that may vary in the construction of
a helix, such models can be used to determine the effects of possible variations
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of the parameters on the performance of a rope. In these models, the underlying
geometry is generally that of a core strand surrounded by one or several helical

strands. Each field has developed a specific body of knowledge based on the previous
work and extensive testing experience, leading to useful rules for particular practical
applications. A review, and then a book on the subject of helical strand models were
published by Costello [1, 2]. As indicated by the book’s title, the setting was the wire

rope applications. Another, more recent review has been published by Cardou and
Jolicoeur [3].

In the overhead electrical conductor technology, the investigations are mostly
oriented towards bending vibration phenomena. In these studies, the conductor is
simply treated as a taut string having some bending stiffness and damping coeffi-

cients, which have to be found experimentally.
Indeed, most of the research done so far on helices and helical wires has been

restricted to linear elastic material behaviour, and only a limited amount on inelastic
behaviour — primarily experimental in character — have been reported. The main
objective of the present paper is to derive an effective response of a viscoelastic helix,

or a bundle of helices, from micromechanics. To set the stage, in section 2, we first
derive such explicit formulas in the simpler case when the helix (or a helical bundle)
is linear elastic. To determine the effective viscoelastic response of helices, as shown

in section 3, we assume certain viscoelastic models at the micro level for the helix
material. Then, by using the elastic-viscoelastic correspondence principle, we derive
the effective constitutive differential equations of the helix at the macro level.

Our focus on a micro-macro bridge for helices should be a fitting tribute to
Professor G.A. Maugin, whose researches have revolved around and motivated

others to work on such topics for many decades. In what follows, we concentrate
on the available strand models, irrespective of their field of application. Thus, a
helical system is called a bundle — generally composed of a core and several helical
strands — independent of any applied connotation.

An exact analytical determination of the mechanical behaviour of a helical
bundle from its microgeometry and Hooke’s law of the helix material is very difficult

if not impossible [2]. Several approximations and assumptions have to be made to
render an analytical solution more tractable. However, as shown in section 2, one
can derive an approximate formula for the effective response of the helix, whose

principal characteristic is the coupling of axial with torsional responses.
Henceforth, for convenience, by a helix we understand either a single strand or

a bundle consisting of a centre strand and m outer strands, such as in a typical wire.
With reference to figure 1, we work under the following assumptions:

(i) The bundle is composed of strands, all uniformly spaced along the
perimeter of a circle of radius r2¼R1þR2, thus forming a ring in a plane
perpendicular to the bundle’s axis without touching each other.

(ii) Each strand’s equilibrium configuration is a helix of constant radius
r2¼R1þR2 and constant helix angle �2 (the subscript 2 refers to the
deformed configuration).

(iii) Strands are linear elastic (with an axial modulus and Poisson’s ratio) and
undergo very small strains.

(iv) Friction and contact deformations are neglected.
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The axial strain of a bundle is defined as

" ¼
�hh� h

h
ð1Þ

where h and �hh are the original and final lengths of the bundle, respectively (figure 1).

The rotational strain of the bundle is defined as

�2 ¼ r2
��� � �

h
ð2Þ

where � and ���2 are the initial and final angles that a bundle sweeps out in a

plane perpendicular to the bundle’s axis, respectively. Finally, the angle of twist

per unit length of the bundle is defined as (note �2¼ r2�2)

�2 ¼
��� � �

h
: ð3Þ

The basic equations of a linear elastic helix can be written as [4]

F

AE
¼ C1"þ C2�

M

ER3
¼ C3"þ C4� ð4a,bÞ

(a)

(b)

Figure 1. (a) Bundle of helically wound strands, and their mechanical model. (b) Cross-
section A–A consisting of six outer helical strands and one inner (straight) strand.

Mechanics of a single helical strand 4215
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where

F ¼ F1 þ F2 M ¼M1 þM2 R ¼ R1 þ 2R2 ð5a,b,cÞ

and F1 and M1 are the contributions of the centre strand and F2 and M2 are the

contributions of the outer strands. In this paper we first focus on the explicit

formulas of four constitutive coefficients appearing in (4a,b) in terms of actual

helical geometry and elastic properties of strands, and then on their parameter

dependencies. We then use these formulas to derive effective differential-type

equations of helices, when strands are made of either Kelvin, or Maxwell or Zener

viscoelastic materials. Our principal interest is in determining whether a strand of,

say, a Kelvin material will result in an effective Kelvin-type, or a more complex helix.

2. Elastic helix

2.1. Explicit forms of the constitutive coefficients

In order to find all the Ci coefficients in (4a,b), we focus on a bundle, and

assume �¼R�s¼ 0 and "¼ "1. Then, by following the approach of Costello [2],

we obtain

F

AE
¼ C1"1

M

ER3
¼ C3"1 ð6a,bÞ

where

C1 ¼
1

AE
pER2

1 þ
m

"1
T2 sin �2 þN02 cos �2
� �� �

ð7Þ

C3 ¼
m

"1ER
3
H2 sin

3 �2 þ G02 cos�2 1þ sin2 �2
� �

þ T2r2 cos�2
� �

: ð8Þ

In the above m is the number of outer strands, N02 is the shear force on a strand’s

cross-section, T2 is the axial tension in the strand; G02 is the bending moment on

a strand cross-section;H2 is the twisting moment in the strand. The subscript 2 refers

to the outer strands, while the prime indicates a component perpendicular to the

strands’ axis.
Focusing the analysis on the outside strand, working from the equilibrium

equations for a single helical strand, we find the following formulas:

"1 ¼ "2 þ
��2
tan�2

�2 ¼ r2�s ¼
"2

tan�2
���2 þ �

R1"1 þ R2"2ð Þ

r2 tan�2
ð9a,bÞ

G02 ¼
p
4
R2��

0
2ER

3
2 H2 ¼

p
4 1þ �ð Þ

R2��2ER
3
2 T2 ¼ p"2ER

2
2 ð10a,b,cÞ
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N02 ¼
H2

R2

cos2 �2
r2=R2

�
G02
R2

sin �2 cos�2
r2=R2

ð11Þ

R2�k02 ¼�
2 sin �2 cos�2

r2=R2

��2 þ �
R1"1 þ R2"2ð Þ

r2

cos2 �2
r2=R2

ð12Þ

R2��2 ¼
1� 2 sin2 �2
� �

r2=R2

��2 þ �
R1"1 þ R2"2

r2

� �
sin �2 cos�2

r2=R2

: ð13Þ

Here "1 is the axial strain in the centre strand ("¼ "1) while "2 is the axial strain in the

outer strand. Also, k02 is the curvature of the outer strand and �2 is the twist per unit
length of the outer strand. Considering the assumption �¼R�s¼ 0 () �s ¼ 0) and

"¼ "1, equations (9a,b) become

"1 ¼ "2 þ
��2
tan�2

0 ¼
"2

tan �2
���2 þ �

R1"1 þ R2"2ð Þ

r2 tan �2
: ð14a,bÞ

In view of (14a,b), we obtain

"2 ¼
r2 tan

2 �2 � �R1

� �
r2 þ r2 tan

2 �2 þ �R2

��2 ¼
r2 1þ �ð Þ

r2 þ r2 tan
2 �2 þ �R2

� �
"1 tan�2: ð15a,bÞ

Finally, substituting (15a,b) into equations (10) through (13), and taking

�2¼ r2�s equations (7) and (8) become

C1 ¼
R2

1

R2
1 þmR2

2

� �þ mR2
2

R2
1 þmR2

2

� �
r2 þ r2 tan

2 �2 þ �R2

� �
� r2 tan

2 �2 � �R1

� �
sin �2 þ

R2
2 1� 2 sin2 �2
� �

sin �2 cos
2 �2

4r2

"

þ
R2

2 sin
3 �2 cos

2 �2 1þ �ð Þ

2r2
�
�2R2

2 sin �2 cos
4 �2 R1 þ r2 tan

2 �2
� �

4 1þ �ð Þr22

#
: ð16Þ

C3 ¼
mpR2

2

R1 þ 2R2ð Þ
3 r2 þ r2 tan

2 �2 þ �R2

� �
�

"
1� 2 sin2 �2
� �

R2
2 tan �2 sin

3 �2
4

þ
�R2

2

4 1þ �ð Þr2
R1 þ r2 tan

2 �2
� �

sin4 �2 cos�2

�
1þ �ð Þ

2
R2

2 sin
2 �2 cos�2 1þ sin2 �2

� �
þ
�R2

2

4r2
R1 þ r2 tan

2 �2
� �

� 1þ sin2 �2
� �

cos3 �2 þ r2 tan
2 �2 � �R1

� �
r2 cos�2

#
: ð17Þ
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To determine C2 and C4, assume "¼ 0 and �¼ �2¼ r2�s. Following a similar

procedure as for C1 and C3, we find

C2 ¼
mr2R

2
2

R1 þ 2R2ð Þ R2
1 þmR2

2

� �
r2 þ r2 tan

2 �2 þ �R2

� �
� r2 tan�2 sin �2 þ

R2
2

4 1þ �ð Þr2
2 sin2 �2 � 1
� �

sin2 �2 cos�2
� �"

�
R2

2

2r2
sin4 �2 cos�2 �

�2R3
2 sin

2 �2 cos
3 �2

4r22 1þ �ð Þ

#
: ð18Þ

C4 ¼
pR4

1

4 R1 þ 2R2ð Þ
4 1þ �ð Þ

þ
r2pmR2

2

R1 þ 2R2ð Þ
4 r2 þ r2 tan

2 �2 þ �R2

� �
�

R2
2 sin

3 �2 tan
2 �2 2 sin2 �2 � 1

� �
4 1þ �ð Þ

þ
R2

2 1þ sin2 �2
� �

sin3 �2
2

�R3
2 sin

5 �2
4 1þ �ð Þr2

"

þ
�R3

2 sin �2 1þ sin2 �2
� �

cos2 �2
4r2

þ r22 sin �2

#
: ð19Þ

Note that equations (16) through (19) are quite general. For example, by

setting m¼ 2 and neglecting the first terms in C1 and C4 (which are the contributions

of the core), one may obtain the constitutive coefficients of a system consisting,

say, of two helically wound strands.

2.2. Parametric studies of constitutive coefficients

In this section we quantitatively assess the dependence of the helix constitutive

coefficients (16)–(19) on its geometric and material properties. In what follows,

one parameter is chosen to vary at a time with all the other parameters being kept

constant.
Note that, in order to compare C2 and C3, these two coefficients have now been

pre-multiplied by pðR2
1 þmR2

2Þ andðR1 þ 2R2Þ
2, respectively. With this modification,

and in light of the Betti–Maxwell reciprocity theorem applied to the helix on the

macro level, C2 and C3 become equal. However, due to the assumptions involved

in their derivation [2], they are not exactly equal, and this is shown in figures 2–4.

For the Poisson ratio between �0.75 and 0.5, the fraction C3/C2 is 0.93 or higher.

Figure 3 shows that, when � is less than about 0.4 rad, C3 is less than C2, and higher

for other values of �. Also, as � approaches p/2 (no helical effect), C3/C2 gets close

to 1, albeit both C2 and C3 then approach zero.
Figure 4 shows the dependence of all four helix coefficients on the helix angle �

at v¼ 0.25. An analogous dependence of strain energies involved in the Ci

coefficients is shown in figure 5. The following observations are made here:

(i) When � approaches p/2, the bundle is a parallel system of straight rods,
and the coupling coefficients C2 and C3 tend to zero. Also then, C1

approaches its maximum value, since all the strands are straight (no
reduction in the axial capacity).

4218 H. Shahsavari and M. Ostoja-Starzewski
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(ii) When � approaches p/2, C4 tends to a number proportional to the shear
modulus G. That property, however, attains its maximum value at � equal
about 0.6 or 0.7 rad. This is because it is much easier to rotate a bundle
of parallel strands than helically wound strands, or, in other words, the
torsional stiffness of a curved beam is larger than that of a straight beam.

(iii) The maximum effect of the coupling coefficients C2 and C3 occurs for �
around 1 rad (or 57�). This value corresponds to the inflection point of
the C1 plot. Note that the helix angles, which maximize the helix coefficients,
are identical for different constant parameters.

In figure 5 strain energies involved in Ci coefficients (derived from Costello’s

assumptions) are plotted as functions of �. These energies are based on �2/2E

Figure 2. Dependence of C3/C2 on the Poisson ratio v at helix angle �¼ 82.5�.

Figure 3. Dependence of C3/C2 on the helix angle � at v¼ 0.25.
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and �2/2G as strain energy densities for axial and torsional deformations, and are
normalized by dividing by E. Figure 5 shows that

(i) Strain energy plots involved in C1 and C4 as functions of �, are qualitatively
similar to those of C1 and C4 as functions of � (figure 4). As expected, with �
approaching p/2, the energy in the C1 term tends to a maximum. However,
the maximum energy in the C4 term occurs at a value of � different from p/2.

(ii) When � is greater than about 0.5 radians, the strain energy plots involved
in coupling terms are qualitatively the same. There are some discrepancies
between the energies of C2 and C3 when � is less than 0.5 rad. This goes
back to the fact that C2 and C3 used in energy formulas are not exactly
equal. But as expected, both energies of coupling terms approach zero
when � approaches p/2.

(iii) The maximum difference between the strain energies involved in C2 and C3

terms is about 20%.

3. Viscoelastic helices

3.1. Application of the correspondence principle

In most viscoelastic materials, Poisson’s ratio (PR) is not a constant, but rather
a function of time or frequency [5, 6]. There exist very few special materials with
time-independent PRs; for example, when the bulk modulus approaches

Figure 4. Dependence of four constitutive coefficients Ci of the helix of equation (4a,b) on
the helix angle � at v¼ 0.25.
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infinity. However, most of the practical problems including composites or sandwich

structures or problems involving thermal and chemical expansions, such as

curing and manufacture of viscoelastic composites, are generally characterized by

time-dependent PRs. Thus, for the sake of generality, in this paper we consider

viscoelastic helices with time-dependent PRs. First, we briefly recall the concepts

and basic equations of the correspondence principle.
As is well known, the elastic stress–strain relations for an isotropic material are

�kk ¼ 3K"kk Sij ¼ 2G"ij ð20a,bÞ

where K and G are the bulk and shear moduli. For simplicity of the notation,

in the sequel we do not show kk and ij indices. The integral forms of the viscoelastic

stress–strain relations are [7]

�ðtÞ ¼

ðt
�1

3Kðt� �Þ
d"ð�Þ

d�
d� SðtÞ ¼

ðt
�1

2Gðt� �Þ
d"ð�Þ

d�
d�: ð21a,bÞ

The Laplace transforms of equations (21a,b) are

���ðsÞ ¼ 3s �KKðsÞ �""ðsÞ �SSðsÞ ¼ 2s �GGðsÞ �""ðsÞ: ð22a,bÞ

Figure 5. Strain energies involved in the Ci terms as functions of � at v¼ 0.25.
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Here, s is the Laplace parameter and the bar sign on a parameter indicates

the parameter in the Laplace space. By comparing equations (20a,b) to

equations (22a,b), it turns out that the viscoelastic stress–strain relations for a

problem in the Laplace space can be derived from a corresponding elastic problem

by replacing

K! s �KKðsÞ G! s �GGðsÞ: ð23a,bÞ

The above transformation is sometimes called Carson transform or S-multiplied

transform, and is in fact the essence of the corresponding principle.
We now consider the helical strand(s) to be made of a viscoelastic material,

described by a differential equation of this general form

� þ P1 _�� þ P2 €�� þ � � � ¼ Q0"þQ1 _""þQ2 €""þ � � � : ð24Þ

Here the number of dots indicates the order of differentiation with respect to time,

while P1,P2, . . . Q0,Q1, . . . are the constitutive constants.
Our objective is to determine differential equations governing the helix at the

macro level — analogous to (4a,b) pertaining to a linear elastic helix — assuming it is

made of strand of a specific viscoelastic model (e.g. Zener type). The elastic helix

of section 2 provides a stepping-stone in this respect, and, although we do not

have perfect formulas relating macro level response to the micro level strand

properties and geometry, the equations (16)–(19) are the best model available to us.
While proceeding by a direct method would be very unwieldy, the cor-

respondence principle of viscoelasticity offers a more convenient path. As all of

our elastic helix equations are derived in terms of E and v, before invoking the

correspondence principle, we first recall these classical elasticity relations

E ¼
9KG

3Kþ G
� ¼

3K� 2G

2 3Kþ Gð Þ
ð25a,bÞ

and then use Carson transforms of equations (23a,b). This method is very general

and straightforward for problems involving time-independent PR.
Another form of the correspondence principle [7] states: ‘‘elastic solutions can be

converted to Laplace transformed viscoelastic solutions through the replacement of

the elastic moduli and elastic Poisson’s ratio by the transform parameter multiplied

transforms of the appropriate viscoelastic relaxation functions and viscoelastic

Poisson’s ratio.’’ We use this idea and substitute

E! s �EEðsÞ �! s ���ðsÞ ð26a,bÞ

in equations (16)–(19). Also, Carson transforms of equations (25a,b) give

�EEðsÞ ¼
9 �KKðsÞ �GGðsÞ

3 �KKðsÞ þ �GGðsÞ
���ðsÞ ¼

3 �KKðsÞ � 2 �GGðsÞ

2s 3 �KKðsÞ þ �GGðsÞ
� � : ð27a,bÞ
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On the other hand, the Laplace transform of equation (24) for the dilatational

response gives

1þ P1sþ P2s
2
þ � � �

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PðsÞ

��� sð Þ �
1

s

XN
k¼1

Pk

Xk
r¼1

sr�ðk�rÞ 0ð Þ

¼ Q0 þQ1sþQ2s
2
þ � � �

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QðsÞ

�"" sð Þ �
1

s

XN
k¼1

Qk

Xk
r¼1

sr"ðk�rÞ 0ð Þ ð28Þ

where �(k� r)(0) designates the (k� r) order derivative of � evaluated at t¼ 0, with

a similar definition for "(k� r)(0). Algebraic operators P(s) and Q(s) are the coeffi-

cients of ���ðsÞ and �""ðsÞ for the assumed dilatational viscoelastic model.
By comparing equation (28) with equation (22a), it is seen that

3s �KK ¼
QðsÞ

PðsÞ
ð29Þ

and

XN
r¼k

Pr�
ðk�rÞ 0ð Þ ¼

XN
r¼k

Qr"
ðk�rÞ 0ð Þ k ¼ 1, 2, 3, . . . ,N: ð30Þ

Equation (30) indicates that the initial conditions upon stress and strain are

not completely independent and relations such as equation (30) must be satisfied.
Employing a similar procedure with respect to the shear response, gives

2s �GG ¼
qðsÞ

pðsÞ
ð31Þ

XN
r¼k

prS
ðk�rÞ 0ð Þ ¼

XN
r¼k

qr"
ðk�rÞ 0ð Þ k ¼ 1, 2, 3, . . . ,N ð32Þ

where pr, qr, p(s), q(s) are analogous coefficients in the assumed viscoelastic

model in shear response. Finally, combining equations (26a,b), (27a,b), (29) and

(31) leads to

s �EEðsÞ ¼
3QðsÞqðsÞ

2pðsÞQðsÞ þ qðsÞPðsÞ
s ���ðsÞ ¼

pðsÞQðsÞ � qðsÞPðsÞ

2pðsÞQðsÞ þ qðsÞPðsÞ
: ð33a,bÞ

3.2. Helices with strands of Kelvin, Maxwell and Zener materials

3.2.1. Helix with strand of a Kelvin material. Using two different Kelvin models
for dilatational and shear deformations of the strand material, that is,

� ¼ Q0"þQ1 _"" S ¼ q0"þ q1 _"" ð34Þ
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respectively, one can easily determine P,Q, p, q as

P sð Þ ¼ 1 Q sð Þ ¼ Q0 þQ1s ð35a,bÞ

p sð Þ ¼ 1 q sð Þ ¼ q0 þ q1s: ð36a,bÞ

Hence,

s �EEðsÞ ¼
3 q0Q0 þ q0Q1 þQ0q1ð Þsþ q1Q1s

2
� �

2Q0 þ q0 þ 2Q1 þ q1ð Þs

s ���ðsÞ ¼
Q0 � q0 þ Q1 � q1ð Þs

2Q0 þ q0 þ 2Q1 þ q1ð Þs
:

ð37a,bÞ

Substituting equations (37a,b) into (4a,b), adopting �¼F/A for Cauchy stress,

�¼M/A for couple-stress and extensively rearranging the terms, one can find the

Laplace transforms of the desired differential equations as

D0 þD1sþD2s
2

� �
��� ¼ E0 þ E1sþ E2s

2
þ E3s

3
� �

�""þ B0 þ B1sþ B2s
2
þ B3s

3
� �

��� ð38Þ

D00 þD01sþD02s
2

� �
��� ¼ E 00 þ E 01sþ E 02s

2
þ E 03s

3
� �

�""þ B00 þ B01sþ B02s
2
þ B03s

3
� �

���: ð39Þ

Here all the constant coefficients, Ds, Es, Bs and D0s, E 0s, B0s, are functions of

the geometry and the Kelvin model parameters. As before, the bar sign refers to

quantities in the Laplace space.
To find the differential equations of the helix, it now suffices to compare

equations (38) and (39) to equations (24) and (28) so as to easily obtain

D0� þD1�
1ð Þ
þD2�

2ð Þ
¼ E0"þ E1"

1ð Þ
þ E2"

2ð Þ
þ E3"

3ð Þ
þ B0�

þ B1�
1ð Þ
þ B2�

2ð Þ
þ B3�

3ð Þ
ð40Þ

D00�þD01�
1ð Þ
þD02�

2ð Þ
¼ E 00"þ E 01"

1ð Þ
þ E 02"

2ð Þ
þ E 03"

3ð Þ
þ B00�

þ B01�
1ð Þ
þ B02�

2ð Þ
þ B03�

3ð Þ: ð41Þ

(40) and (41) are the differential equations of a viscoelastic helix with v(t) 6¼ 0 for

the material at the micro level. Here, for convenience of notation, we employ (n) to

denote the n-th order time derivative. In view of equation (30), in order for

equation (40) to be the inverse Laplace transform of equation (38), the following

relations must be satisfied:

XN¼3
r¼k

Dr�
ðk�rÞ 0ð Þ ¼

XN¼3
r¼k

Er"
ðk�rÞ 0ð Þ þ Br�

k�rð Þ 0ð Þ
h i

k ¼ 1, 2, 3: ð42Þ

Equation (42) imposes three independent constraints upon initial stresses and

strains. Similar conditions apply to equation (41). In the special case when v¼ 0,

equation (33b) leads to p(s)Q(s)¼ q(s)P(s), and this simplifies equation (33a) to

s �EE sð Þ ¼
qðsÞ

pðsÞ
¼

Q sð Þ

P sð Þ
: ð43Þ
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If we now use (43), instead of equations (33a,b), along with v¼ 0, in the cor-

respondence principle, then we arrive at much simpler forms of the differential

equations of viscoelastic helix:

D0� ¼ E0"þ E1 _""þ B0� þ B1 _��

D00� ¼ E 00"þ E 01 _""þ B00� þ B01 _��:
ð44a,bÞ

Except for the obvious coupling terms, (44a,b) are similar in type to the Kelvin

differential equations. It is only in this special case of strand’s Poisson ratio equal

to zero, that we have a Kelvin-type helix.

3.2.2. Helix with strand of a Maxwell material. By using two Maxwell models for
the dilatational and shear responses of the strand material at the micro level

� þ P1 _�� ¼ Q1 _"" Sþ p1 _SS ¼ q1 _"" ð45a,bÞ

and taking similar steps as those for the Kelvin model, we determine the differential

equations of this viscoelastic helix

D2�
2ð Þ
þD3�

3ð Þ
þD4�

4ð Þ
þD5�

5ð Þ
¼ E3"

3ð Þ
þ E4"

4ð Þ
þ E5"

5ð Þ

þ B3�
3ð Þ
þ B4�

4ð Þ
þ B5�

5ð Þ
ð46Þ

D02�
2ð Þ
þD03�

3ð Þ
þD04�

4ð Þ
þD05�

5ð Þ
¼ E 03"

3ð Þ
þ E 04"

4ð Þ
þ E 05"

5ð Þ

þ B03�
3ð Þ
þ B04�

4ð Þ
þ B05�

5ð Þ: ð47Þ

Here �(5) and �(4) are the fifth and fourth time derivatives of stress, and similarly

for strain. All the constant coefficients, Ds, Es, Bs and D0s, E0s, B0s, are functions of

the geometry and the Maxwell model parameters. Again the initial conditions

are not completely independent. For instance, considering (46) the following five

equations must be satisfied:

XN¼5
r¼k

Dr�
ðk�rÞ 0ð Þ ¼

XN¼5
r¼k

Er"
ðk�rÞ 0ð Þ þ Br�

k�rð Þ 0ð Þ
h i

k ¼ 1, 2, 3, 4, 5: ð48Þ

Clearly, equations (46) and (47) are more complex in type than the original

Maxwell material of the strand. Again it may be shown that, only in the special

case of strand’s Poisson ratio equal to zero, does one obtain a Maxwell-type helix

D0� þD1�
1ð Þ
¼ E1"

1ð Þ
þ B1�

1ð Þ
ð49Þ

D00�þD01�
1ð Þ
¼ E1"

1ð Þ
þ B01�

1ð Þ: ð50Þ

3.2.3. Helix with strand of a Zener material. The Zener (or 3-Parameter) solid is
the simplest acceptable viscoelastic model sufficiently close to real solids [8]. By using

two such models for the material at the micro level

� þ P1 _�� ¼ Q0"þQ1 _"" Sþ p1 _SS ¼ q0"þ q1 _"" ð51a,bÞ
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and following similar procedures as those used for Kelvin and Maxwell models, one

can find the differential equations of a corresponding viscoelastic helix:

D0� þD1�
1ð Þ
þD2�

2ð Þ
þD3�

3ð Þ
þD4�

4ð Þ
þD5�

5ð Þ

¼ E0"þ E1"
1ð Þ
þ E2"

2ð Þ
þ E3"

3ð Þ
þ E4"

4ð Þ
þ E5"

5ð Þ

þ B0� þ B1�
ð1Þ
þ B2�

2ð Þ
þ B3�

ð3Þ
þ B4�

ð4Þ
þ B5�

5ð Þ
ð52Þ

D00�þD01�
1ð Þ
þD02�

2ð Þ
þD03�

3ð Þ
þD04�

4ð Þ
þD05�

5ð Þ

¼ E 00"þ E 01"
1ð Þ
þ E 02"

2ð Þ
þ E 03"

3ð Þ
þ E 04"

4ð Þ
þ E 05"

5ð Þ

þ B00� þ B01�
1ð Þ
þ B02�

2ð Þ
þ B03�

3ð Þ
þ B04�

4ð Þ
þ B05�

5ð Þ: ð53Þ

Relations between initial conditions similar to (48) applied here as well. The solution

to all the above differential equations for creep and relaxation tests can be found by

using the Laplace transform technique.
Clearly, equations (52)–(53) are more complex in type than the original Zener

material of the strand. Again, here it may be easily shown that, only in the special

case of the strand’s Poisson ratio equal to zero, does one obtain a Zener-type helix:

D0� þD1�
1ð Þ
¼E0"þ E1"

1ð Þ
þ B0� þ B1�

1ð Þ
ð54Þ

D00�þD01�
1ð Þ
¼E 00"þ E 01"

1ð Þ
þ B00� þ B01�

1ð Þ: ð55Þ

3.3. Relaxation and creep tests

Thus far, we have described the viscoelastic helix by its differential equations.

To study the behaviour of such a helix, a standard test consisting of a creep and

a relaxation test has to be used, e.g. [8]. In the relaxation test constant strains are

applied and the time-dependent stresses are derived, and in the creep test constant

stresses are applied and time-dependent strains are derived.

3.3.1. Relaxation test. In the relaxation test both " and � are assumed to be
constant. Therefore

_"" ¼ €"" ¼ � � � ¼ _�� ¼ €�� ¼ � � � ¼ 0: ð56Þ

The differential equations of a viscoelastic helix using two Kelvin models (40) and

(41) simplify to

D0� þD1 _�� þD2 €�� ¼ E0"þ B0� D00�þD01 _��þD02 €�� ¼ E 00"þ B00�: ð57a,bÞ

Equations (57a,b) are two independent linear second-order differential equations

with constant coefficients. The time-dependent stresses for the Kelvin model
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in terms of hyperbolic functions are

�Kelvin ¼
"E0 þ �B0ð Þ

D0

1þ e �D1=ð2D2Þtð Þ
�cosh

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 � 4D0D2

q
2D2

0
BB@

1
CCA

0
BB@

2
664

�

D1sinh t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 � 4D0D2

q
=ð2D2Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 � 4D0D2

q
1
CCA
3
775 ð58Þ

SKelvin ¼
"E 00 þ �B

0
0

� �
D00

1þ e �D
0
1=ð2D

0
2Þtð Þ �cosh

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D021 � 4D00D

0
2

q
2D02

0
@

1
A

0
@

2
4

�
D01 sinh t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D021 � 4D00D

0
2

q
=ð2D2Þ

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D021 � 4D00D

0
2

q
1
CA
3
75 ð59Þ

and the time-dependent stresses for Zener models are

�Zener ¼
� "E0 þ �B0ð Þ

D0

X5
i¼1

D5	
4
i þD4	

3
i þD3	

2
i þD2	i þD1

� �
5D4

5	
4
i þ 4D4	

3
i þ 3D3	

2
i þ 2D2	i þD1

e	it

 !
� 1

" #
ð60Þ

SZener ¼
� "E 00 þ �B

0
0

� �
D00

X5
i¼1

D05	
4
i þD04	

3
i þD03	

2
i þD02	i þD01

� �
5D045 	

4
i þ 4D04	

3
i þ 3D03	

2
i þ 2D02	i þD01

e	it

 !
� 1

" #
: ð61Þ

In the equation (60)

	i ¼ Root of D5z
5
þD4z

4
þD3z

3
þD2z

2
þD1zþD0

� �
ð62Þ

while in (61)

	i ¼ Root of D05z
5
þD04z

4
þD03z

3
þD02z

2
þD01zþD00

� �
: ð63Þ

In general, in the relaxation test of the viscoelastic helix — given that both strains

" and � are constant and stresses are uncoupled — each of the differential equations

can be solved independently to find the time-dependent stresses. In the creep test,

however, coupled differential equations need to be solved to find the time-dependent

strains.

3.3.2. Creep test. Creep is a situation where, with the passage of time, stresses
remain constant and deformations continue to grow. This time-dependent phenom-

enon involves a time-dependent PR. Now, such PR, or v(t), has been defined in

several forms in the literature [5], but the one that is amenable to the correspondence

principle is defined as minus the ratio of the time-dependent lateral strain to the

constant axial strain, under stress relaxation conditions [5, 7]. In the creep test,
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both stresses � and � are assumed to be constant and since strains are varying,

one cannot use equation (26b). In order to be able to use the correspondence

principle for the creep test and be consistent with the definition of v, one has to

replace v by equation (25b) in the elastic solution and work with K and G to find the

viscoelastic response. Interestingly, this leads to the same differential equations as we

already derived for Kelvin, Maxwell and Zener models. For example, for the Kelvin

model at a strand’s level, by recourse to the aforementioned method, we end up

deriving the same equations as in (40) and (41).
For the creep test, recalling the assumption of the standard test [8, 9],

we have

_�� ¼ €�� ¼ � � � ¼ _�� ¼ €�� ¼ � � � ¼ 0 ð64Þ

and, upon taking the Laplace transform of equations (40) and (41), we find

D0

�

s
¼ E3s

3
þ E2s

2
þ E1sþ E0

� �
�""þ B3s

3
þ B2s

2
þ B1sþ B0

� �
��� ð65Þ

D 00
�

s
¼ E 03s

3
þ E 02s

2
þ E 01sþ E 00

� �
�""þ B03s

3
þ B02s

2
þ B01sþ B00

� �
���: ð66Þ

To find the solution, unlike the relaxation case, we have to solve a system of two

coupled differential equations to find the two unknowns �"", ���. Thus,

�"" ¼ D0 B03s
4
þ B02s

3
þ B01s

2
þ B00s

� �
�

�D 00 B3s
4
þ B2s

3
þ B1s

2
þ B0s

� �
�
.h

E3s
4
þ E2s

3
þ E1s

2
þ E0s

� �
� B03s

4
þ B02s

3
þ B01s

2
þ B00s

� �
� E 03s

4
þ E 02s

3
þ E 01s

2
þ E 00s

� �
� B3s

4
þ B2s

3
þ B1s

2
þ B0s

� �i
ð67Þ

��� ¼ D00 E3s
4
þ E2s

3
þ E1s

2
þ E0s

� �
��D0 E 03s

4
þ E 02s

3
þ E 01s

2
þ E 00s

� �
�.h

E3s
4
þ E2s

3
þ E1s

2
þ E0s

� �
B03s

4
þ B02s

3
þ B01s

2
þ B00s

� �
� E 03s

4
þ E 02s

3
þ E 01s

2
þ E00s

� �
B3s

4
þ B2s

3
þ B1s

2
þ B0s

� �i
: ð68Þ

By performing the inverse Laplace transform on equations (67) and (68), the time-

dependent forms of " and � are found to be

" ¼
X8
i¼1

Jð	iÞ

I 0ð	iÞ
e	it � ¼

X8
i¼1

Hð	iÞ

I 0ð	iÞ
e	it: ð69Þ

Here I is the denominator of (67) and (68) — indeed, a polynomial function of s —

while 	is are the roots of this polynomial; I 0(	i) is the derivative of I with respect to s

calculated at 	i; J and H are numerators of equations (67) and (68), respectively,

which are polynomial functions of s calculated at 	i. By using the same procedure,

one can find " and � for any other models, like the Maxwell model or the
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Zener model. More extensive details on those and all other aspects of the present
study can be found in [10].

4. Results and conclusions

In the case of an elastic helix:

. By reworking the numerical-type derivation of Costello [2] in a more concise
form, all the constitutive helix coefficients have been derived explicitly.

. Since the ratio C3/C2 comes out never equal to unity unless �¼ p/2, further
work on its improved analytical derivation is needed. This should allow
a better assessment of the validity or influence of the various hypotheses
involved in the mechanics of a single helically shaped strand (or a bundle
of strands). The key assumptions that cause this discrepancy are: the product
of higher-order terms resulting from the strain of a single helical strand is
neglected; the changes in the curvature and twist per unit length are linearized;
small ��¼ �2� �1 has been assumed and, based on this, some trigonometric
functions are simplified accordingly.

. C2 and C3 do not depend on the centre strand and the only contribution of the
centre strand is in the first terms of C1 and C4.

. When � approaches p/2, C1 and C4 approach values proportional to E and G,
respectively, while C2 and C3 approach zero.

. The maximum value of C1 occurs at �¼ p/2 while the maximum values of C2

and C3 occur approximately when �¼ 1 rad. Also, the maximum value of C4

occurs when � is about 0.6�0.7 rad.
. The ratio C3/C2 gets closer to unity as � approaches p/2. This observation

turns out to be a general trend for any helical strand.
. The maximum difference between strain energies involved in the C2 and C3

terms is about 20%.

In the case of viscoelastic helices:

. The differential equations of a linear viscoelastic helix considering the time-
dependent PR have been derived, along with explicit forms of all the coeffi-
cients, for three basic types of linear differential models (Kelvin, Maxwell,
Zener) for the material at the micro level.

. The linear viscoelastic responses of a helix (either a bundle or a single strand)
are generally different in type (and more complex) from those of the material
at the micro level.

. When v(t)¼ 0, the type of viscoelastic response of the helix is qualitatively the
same as the viscoelastic response of the assumed model at the micro level.

. Although we did not work with an arbitrary-order differential equation (24),
our study clearly indicates that direct viscoelastic generalizations of effective
constitutive equations of helices, not based on systematic analyses such as
those presented here, are going to be invalid. This is due to the fact that,
for a given complexity of the material model, higher-order derivatives are
showing up in the differential equation governing the helix.
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. The foregoing observation relating to uniaxial helices also provides guidance
for admissible vis-à-vis inadmissible models of three-dimensional (3-D) chiral
(i.e. helically structured) materials. It is well known that the constitutive
relation of a linear elastic chiral material in 3-D involves two coupled
equations [11]

�ij ¼C
ð1Þ
ijkl"kl þ C

ð2Þ
ijkl�kl ð70Þ

�ij ¼C
ð3Þ
ijkl"kl þ C

ð4Þ
ijkl�kl ð71Þ

where �ij is the couple-stress tensor, while �kl is the torsion–curvature tensor.
In view of the consequences obtained in section 3, one cannot arbitrarily
postulate viscoelastic generalizations of (70) and (71) in terms of differential
tensorial equations. Another case study where a uniaxial helix model based on
equations (4a,b) has provided guidance on thermomechanics of 3-D chiral
materials has recently been presented in [12]. Other studies employing
the same Ansatz were focused on vibration responses of a single-phase helix
[13] and homogenization of microstructured elastic and thermoelastic helices
[14, 15].
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