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It is a common perception that layered materials are soft in the
interlayer direction. Herein, we present results of first-principles
calculations of the structure and elastic constants of a class for
hydrated oxides, tobermorite, and jennite, which illustrate that
this is not the case, if (1) the interlayer distance is such that
coulombic interlayer interactions become comparable to the
iono-covalent intralayer interactions and (2) the existence of in-
terlayer ions and water molecules do not shield the coulombic
interlayer interactions. In this case, the mechanically softest di-
rections are two inclined regions that form a hinge mechanism.
The investigated class of materials and results are relevant to
chemically complex hydrated oxides such as layered calcium–
silicate–hydrates (C–S–H), the binding phase of all concrete
materials, and the principle source of their strength and stiffness.
In addition, the first-principles results may serve as a benchmark
for validating empirical force fields required for the analysis of
complex calcio–silicate oxides.

I. Introduction

BY mixing water and cement, a complex hydrated oxide
called C–S–H (calcium–silicate–hydrate), precipitates as

nanoscale clusters of particles. Here the cement chemistry no-
tation is used for C5CaO, S5SiO2, H5H2O. C–S–H is a
nonstoichiometric gelatious oxide and the hyphenated expres-
sion refers to different combination of C, S, and H. C–S–H is the
primary binding product of cement hydration,1 and it is con-
sidered to be the elementary building block for concrete strength
and durability. But despite its ubiquitous presence and decades
of intensive research, the atomic arrangement of C–S–H remains
an enigma. The average Ca/Si ratio in C–S–H is 1.7,2 with local
values measured by transmission electron microscopy (TEM) be-
tween 0.6 and 2.3.3 High-resolution 29Si, 1H, and 17O nuclear
magnetic resonance (NMR), X-ray adsorption spectroscopy, IR
spectroscopy, and Raman spectroscopy revealed important in-
formation about C–S–H structures.4 It is widely accepted that C–
S–H has a layered structure akin mostly to that of tobermorite
and jennite minerals. Because of their similar chemical composi-
tion and similar crystal structure, tobermorite and jennite miner-
als have been suggested as possible model crystals for the C–S–H
structure.3,5 The focus of this paper is twofold:

(1) To present first-principles calculations on the structure
and mechanical properties of such a family of complex hydrated
oxides, tobermorite polymorphs, and jennite. Among mechan-
ical properties, the calculation of elastic constants is the first and
most fundamental concern because many other properties such

as phase-transition, mechanical stability, and fracture energy
can be related to them. Such first-principles results may also
serve as a benchmark for validation of empirical force fields
commonly employed in atomistic simulations of complex
hydrated oxides.6

(2) To analyze and unravel the nature of interlayer bonds in
this class of chemically complex layered oxides. A common fea-
ture of many layered structures are strong inplane interatomic
bonds with only very weak bonds between the layers; which
suggests that the layer direction is the softest direction. By
means of an investigation on the nature of interlayer interac-
tions, we show that this class of hydrated oxides has a distinctive
behavior away from the common intuition.

The paper is organized as follows: Basic structural compo-
nents of the tobermorite family and jennite are reviewed in Sec-
tion II. The computational method is presented in Section III.
Section IV presents the results including lattice parameters, elas-
tic constants, interlayer interaction mechanisms, and averaged
mechanical properties. These results are discussed in Section V.

II. Mineral Analogs of C–S–H

Different models define the C–S–H gel as calcium oxide sheets
connected to silicate chains to form a layered structure.7–9 There
are at least 30 crystalline minerals that are similar in composi-
tion to C–S–H. However, even though their overall chemical
composition is similar, they differ in the atomic arrange-
ment, the Ca/Si ratio and the number of OH and H2O groups.1

High-resolution TEM observations indicate that the C–S–H gel
contains mostly tobermorite and jennite-like structures.3,5 Very
recently, the atomic structure of tobermorite polymorphs and
jennite was reported,10–13 from extensive X-ray diffraction Ri-
etveld analyses.

(1) Tobermorite Minerals

Figures 1(a) and (b) show respectively a top view of tobermorite
with silica chains connected to calcium ribbons, and a side view
of tobermorite with two layers (the interlayer water molecules
and interlayer calcium ions are not shown in this figure). The
silica chains are connected to calcium layers from both top and
bottom. These chains are Wollastonite type or Dreierketten in
which the minimum length of the repeating unit contains three
tetrahedra. Two of the tetrahedra share an oxygen in a dome-
type pattern and are called paired tetrahedra while the third
tetrahedron which points out of the calcium layer, is called
bridging tetrahedron. NMR studies show that C–S–H has a
structure very similar to this form.7–9 Tobermorite groups are
layered structures and can be classified based on their different
basal spacing as 9.3� 10�10, 11.3� 10�10, and 14� 10�10 m14

which are usually referred to as 9, 11, and 14 Å tobermorite
minerals.10–12,14 This interlayer spacing distance represents the
degree of hydration of tobermorite, a property that changes
through heating.15–20 The interlayer distance can in general
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contain water molecules and Ca cations (or other cations) de-
pending on the hydration degree (water content) and chemical
composition.

A head-to-head connection of bridging tetrahedra (such as in
Fig. 1(c)) form a ring-type shape that is called double silica
chain. Otherwise, it is called a single silica chain with dangling
bridging tetrahedra in the interlayer distance (Fig. 1(b)). A [010]
view of tobermorite and the flanking bridging tetrahedra is
shown in Fig. 1(d). Two different structures for tobermorite
11 Å can be found: The Merlino structure with chemically
bonded layers (double silica chain),11 and the Hamid structure
that depicts tobermorite as independent layers with single
silica chains.21 While the crystal size is unchanged experimen-
tally, the Hamid’s tobermorite structure can have three different
Ca/Si ratios, namely 0.67, 0.83, and 1. Tobermorite 11 Å
(Hamid and Merlino) and tobermorite 14 Å are monoclinic
crystals while tobermorite 9 Å is a triclinic crystal.

(2) Jennite

Jennite is an another analogous C–S–H crystalline mineral that
is believed to be closely related to the structure of C–S–H at late
stages of the hydration process.1 29Si NMR indicates that it has
single silica chains17 with Ca/Si5 1.5. Its triclinic crystal struc-
ture is solved and refined in Bonnacorsi et al.13 Figure 2(a)

shows a layer of jennite along with a unit cell. Figure 2(b) shows
a side view of jennite.

III. Computational Methods

Akin to experimental approaches, the use of first-principles sim-
ulation techniques to identify core properties of materials re-
quires some technical details about the simulation tools
employed in this study. There are very limited number of first-
principles study on the structure of tobermorite and jennite, 22,23

here we extend those approaches to the structure and elastic
constants of these minerals. Except otherwise stated, all calcu-
lations reported in this paper are performed by Density
Functional Theory (DFT)24,25 using GGA exchange correlation
functionals. For energy and stress calculations we used ultrasoft
pseudopotentials26 with a plane wave basis set and a cutoff
energy of 420 eV for the wavefunctions and 50350 eV for
the charge density, as implemented in the PWSCF package of
Quantum Espresso distribution.27

Considering first-principles calculations, it is important to
ensure that the convergence in k-point sampling and plane wave
energy cutoffs are satisfactory. However, the computational
costs grow exponentially when the system size becomes large,
and thus there is a trade-off. In our study, as the system sizes
were relatively large (�70 to �100 atoms per unit cell) we used
g-point-sampling of the Brillouin zone.

Before calculating the elastic properties, we perform 0 K
energy minimizations as implemented in PWSCF to fully
relax the crystals. The importance of obtaining the equilibrium
state is first, to avoid any possible metastable state and
second, to make sure that the current state is not far from the
regions where linear elasticity holds. To achieve equilibrium
ground state the following two criteria are met concurrently:
each of the stress components is below 0.5 kbar; each of the
X, Y, and Z component of the force on any single atom is below
0.01 eV/A.

Once all crystalline minerals have attained relaxed states, we
apply strains to the cell coordinates to calculate elastic con-
stants. We use stress–strain approach to calculate the elastic
constants,28 which allows one to obtain second-, third-, and
fourth-order elastic constants. In this method, for each strain, by
calculating the stress tensor, one can construct a linear system
relating stresses to strains. Then using an orthogonal matrix
factorization and the best least square fit, elastic constants are
found. Further details of this technique and its application to a
wide range of ceramics can be found in Yao et al.29 and refer-
ences cited therein. The generalized Hooke’s law in linear elas-
ticity is given by
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Because the crystalline minerals under investigation are either
monoclinic or triclinic, we apply all six strains. By applying any
nonzero strain in Eq. (1) and calculating stresses, one can de-
termine a column of elastic constants. Thus by repeating this
procedure for all strains we cover the whole elastic tensor. In this
method, off-diagonal components appear twice in the calcula-
tions and to have a better estimate we take the average of the
two equivalent off-diagonal terms.

As elastic constants are defined in an orthogonal coordinate
system, we relate cell parameters to Cartesian system XYZ (sub-
index 1 in Eq. (1) refers to X-axis; 2 to Y-axis and 3 to Z-axis) in
the following way: the first cell parameter, a, is parallel to X-
axis; second cell parameter, b is in the XY plane and finally the
third cell parameter, c, is a vector in XYZ space. The variables

(d)

Pair tetrahedra
Bridging
tetrahedron

9 Å

11 Å

14 Å

(a) (b)

(c)

Fig. 1. (a) Top view of a typical tobermorite. Small pyramids represent
silicon tetrahedra. (b) Side view of a layered tobermorite with single sil-
ica chains. (c) A side view of a layered tobermorite with double silica
chains. (d) [010] view showing the dangling bridging tetrahedra.

Fig. 2. (a) A layer of jennite along with is unit cell. a, b, and c are the
unit cell vectors (b) [100] view of jennite.
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e4, e5, and e6 are the shear strains between YZ, XZ, and XY
planes, respectively. We apply both positive (stretch) and neg-
ative (compression) strains. Thus in total we perform 12 simu-
lations for each crystal. Next, using least square method, we
minimize

si � sr
i

� �
� Cij ei � eri

� ��� �� (2)

where si
y and ei

y are residual stress and residual strain, respec-
tively, and (ei�eir) is the applied strain. In this way, the uncer-
tainty in Cij values will be minimized with enhanced overall
accuracy. Choosing the correct magnitude for the applied strain
is critical. Sufficiently small strains are needed to ensure that
elastic constants are within the linear theory of elasticity, but
this will require higher precision accuracy in calculating the total
energy and forces on each atom. This is computationally very
expensive, and therefore there is a trade-off between the desired
level of accuracy and computational time. In practice it has
been shown that 1% strain is sufficiently accurate for calculating
elastic constants.29,30 Thus we use 70.01 for all strains and
let the system relax after each strain because electronic vibra-
tions are coupled to ionic motions. Once we obtain the elastic
constant tensor we invert it to obtain the compliance tensor
by Sij5Cij

�1, where the first three diagonal terms of the
compliance tensor, S11, S22, S33, represent the inverse of
Young’s modulus in the corresponding X, Y, and Z directions,
respectively.

In order to calculate the partial atomic charges, we performed
variational static calculations at the Hartree–Fock (HF) ap-
proximation (without a posteriori account for electron correla-
tion effects) using the CRYSTAL code developed for solid-state
applications.31 Multielectron wave functions are described by
linear combination of crystalline orbitals expanded in terms of
Gaussian-type basis sets. Considering the system size, we have
chosen the 6-31G� split valence basis set for O29 and the stan-
dard 6-21 G for H. Ca and Si species are implemented as
described by Barthelat and Durand pseudo potentials, respec-
tively.31 Convergence parameters were set for a high level of
accuracy (ITOL15 ITOL25 ITOL35 5, ITOL45 6, ITOL55
11). Atomic partial charges were determined following the Mul-
liken partitioning scheme. This provides an easy way to char-
acterize the type of bonding schemes (covalent, iono-covalent,
coulombic) that are in action.

DFT at its current state of development may not yield accu-
rate van der Waals dispersion forces.33,34 In C–S–H models, the

interlayer interactions are dominated by coulombic forces rather
than van der Waals dispersion forces.6 Thus the predicted in-
terlayer interactions for C–S–H models should not be affected
by this issue. In this work, we used Jmol35 to create 3D visual-
izations of the crystal structures.

IV. Computational Results

(1) Cell Parameters and Elastic Constants

Table I shows the cell parameters for the studied C–S–H models
obtained by first-principles calculations. Compared with exper-
iments, the average error of these results is typically o1%, and
the maximum error is approximately 3% for tobermorite 11 Å
(Hamid) Ca/Si5 0.67. This error may stem partly from 0 K
temperature conditions used in first-principles calculations ver-
sus room temperature in experiments, and may also be due to
the fact that the final stress components during the course of
relaxation are not exactly zero. Thus it is expected that there
could be small residual stresses that disturb the equilibrium lat-
tice parameters.

Table II summarizes the elastic constants obtained from first-
principles calculations. Tobermorite 9 Å and jennite (triclinic
crystals) have 21 independent second-order elastic constants.
The remaining crystals which are monoclinic have only 13 in-
dependent elastic constants.36 For monoclinic crystals we as-
sumed that the unique axis is in the direction of the c cell
parameter.

For tobermorite 9 Å we were able to compare the results
with higher k-points sampling (four k-points with a mesh of
2� 2� 1 using Monkhorst-Pack scheme.37 In this case, the
maximum errors on lattice parameters and elastic constants
were o0.3% and 2 GPa, respectively. The use of GGA ex-
change correlation potentials lead to larger exchange correla-
tion energy and therefore favor longer bonds. This results in
lattice parameters that are overall larger than experiments, and
elastic constants that are slightly underestimated.

(2) Hinge DeformationMechanism in Tobermorite 9 and 11 Å

In this section, via classical rotation of the compliance tensors36

we focus on Young’s modulus along any arbitrary direction.
This enables us to identify the critical directions of a crystal
where the softest or stiffest Young’s moduli are located. While
we performed this analysis for all crystals, here we only report
the findings for tobermorite 11 Å.

Table I. First-Principles Calculation of Cell Parameters for the Tobermorite Family and Jennite

Cell parameter a (Å) b (Å) c (Å) a (deg.) b (deg.) g (deg.)

Tobermorite 14 Å Experiment 6.735 7.425 27.987 90 90 123.25
Ca5Si6O16(OH)2 � 7H2O Ab initio 6.87 7.43 28.49 89.96 90.05 123.47
Ca/Si5 0.83 Error (%) 2.00 0.13 1.80 0.006 0.004 1.31
Tobermorite 11 Å (Merlino) Experiment 6.735 7.385 22.487 90 90 123.25
Ca4Si6O15(OH)2 � 5H2O Ab initio 6.80 7.51 22.572 89.83 89.05 123.43
Ca/Si5 0.67 Error(%) 1.00 1.70 0.38 0.18 1.00 0.15
Tobermorite 9 Å Experiment 11.156 7.303 9.566 101.08 92.83 89.98
Ca5Si6O16(OH)2 Ab initio 11.211 7.389 9.710 102.65 92.54 89.75
Ca/Si5 0.83 Error (%) 0.49 1.17 1.5 1.55 0.28 0.25
Tobermorite 11 Å (Hamid) Experiment 6.69 7.39 22.779 90 90 123.49
Ca6Si6O18 � 2H2O Ab initio 6.60 7.40 23.13 90.00 90.00 123.62
Ca/Si5 1 Error(%) 1.4 0.08 1.5 0 0 0.11
Tobermorite 11 Å (Hamid) Experiment 6.69 7.39 22.779 90 90 123.49
Ca5Si6O16(OH)2 � 2H2O Ab inito 6.708 7.373 22.54 90 90 123.71
Ca/Si5 0.83 Error (%) 0.27 0.22 1.00 0 0 0.18
Tobermorite 11 Å (Hamid) Experiment 6.69 7.39 22.779 90 90 123.49
Ca4Si6O14(OH)4 � 2H2O Ab inito 6.898 7.371 22.153 90 90 124.64
Ca/Si5 0.67 Error (%) 3.10 0.24 2.74 0 0 0.9
Jennite Experiment 10.575 7.265 10.931 101.3 96.98 109.65
Ca9Si6O18(OH)6 � 8H2O Ab inito 10.702 7.342 10.891 102.11 95 109.82
Ca/Si5 1.5 Error (%) 1.2 1.06 0.36 0.8 2.0 0.16

October 2009 First-Principles Study of Elastic Constants and Interlayer Interactions 2325



Because tobermorite minerals have layered structures, it is
expected intuitively that the softest direction is perpendicular to
the layers and hence parallel to the interlayer direction. This is
the case for tobermorite 14 Å with the interlayer stiffness
C335 32 GPa, which is about 18% of the average intralayer
stiffness. However, when the interlayer distance is decreased to
11 Å or less, in contrast to this conjecture, we find that the in-
terlayer direction is not always the softest direction. For to-
bermorite 11 Å there are two possible structural forms:

Case 1. Hamid Structure: In Hamid structures, it is hy-
pothesized that the layers are not connected through covalent
bounds, instead the layers interact via long range coulombic
forces.38 To validate this hypothesis, we calculate the atomic
charges at different interlayer distances. Table III shows that the
average partial charges for tobermorite Ca/Si5 0.83 at the in-
terlayer distance of 11 and 14 Å remain unchanged (except for a
small redistribution of partial charges in water molecules due to
the different adsorption sites). Thus pulling the layers apart does
not involve any covalent bond breakage. Otherwise, the partial
atomic charges should have been changed upon stretching and
bond breakage. Hence, there exists no covalent bonds in be-
tween the layers; instead long-range coulombic forces form the
interlayer interactions. As an example, Fig. 3(a) shows a unit cell
of tobermorite 11 Å (Hamid) with Ca/Si5 0.83. In Fig. 3(b) the
sphere with the unit radius represents directional Young’s mod-
ulus for this structure. In view of Fig. 3(b), it turns out that the
interlayer directions is not the softest direction and there are two
inclined soft regions (blue area on the sphere). Considering
Table II, in tobermorite 11 Å (Hamid) with Ca/Si5 0.83, the
coulombic interlayer interactions—which results in C33�85

GPa – are now comparable to the iono-covalent intralayer in-
teractions (C11, C22�130 GPa). However, this requirement does
not necessarily make two inclined soft regions in layered struc-
tures. Figure 4 shows the top views for different isomorphs of
tobermorites 11 Å (Hamid type) with Ca/Si5 0.67, 0.83, and 1.
These three isomorphs of Hamid structures are formed by add-
ing (removing) an interlayer Ca and removing (adding) two
protons. It is interesting to note that by increasing Ca/Si ratio,
the two inclined soft regions (blue regions) shift toward the in-
terlayer direction. Therefore at Ca/Si5 1, the interlayer direc-
tion becomes the softest direction.

In order to investigate this later effect further, we quantify the
total coulombic energy in the interlayer direction for each is-
omorph. To do so, we identically increase the interlayer distance
for each Ca/Si ratio and relax the structure using DFT method.
This allows us to monitor the change in total coulombic energy
for each case. For a 0.3 Å interlayer displacement, the change in
Ewald corrected coulombic energy for Ca/Si5 0.67, 0.83, and 1
is, respectively, 1:08eV

Å
3, 0:78

eV

Å
3, and 0:46eV

Å
3 per unit cell. This in-

dicates that adding extra Ca ions (increasing Ca/Si ratio) in the
interlayer distance reduces the contribution of coulombic inter-
layer interactions and hence shields the long-range interlayer
bonds. This eventually leads to shifting the two inclined soft re-
gions to a single straight interlayer direction (Fig. 4).

Case 2. Merlino Structure: Figure 5(a) shows a side view of
the tobermorite 11 Å (Merlino) unit cell. The arrows indicate the
direction of the softest Young’s modulus. Figure 5(b) gives a top
view of the same unit cell indicating two equivalent soft regions
(blue color). In this case, the interlayer direction is considerably
strengthened by covalent Si–O–Si interlayer bounds, which is
due to the presence of double silica chains (head-to-head con-
nection of bridging tetrahedra). From a structural point of view
it thus appears as if the unit cell is easier to pull (or push) along
the blue regions. Therefore, the shared oxygen atom of the dou-
ble silica chain acts as a hinge, and the entire set of upper and
lower atoms can pivot around this point. This is illustrated in
Fig. 5(a) by blue and black arrows. Similar to tobermorite 11 Å
(Merlino), there are covalent interlayer bonds in tobermorite
9 Å, which lead to the hinge mechanism. Physically the hinge
mechanism implies that atomic reorientations are preferred over
straight bond stretches to achieve the minimum energy. Because
of the covalent interlayer bonds, the strengthening of the inter-

Table II. First-Principles Calculation of Elastic Constants for the Tobermorite Family and Jennite

Elastic constant (GPa)

Tobermorite (Merlino) Tobermorite (Hamid, 11 Å) Jennite

14 Å 11 Å 9 Å Ca/Si5 1 Ca/Si5 0.83 Ca/Si5 0.67 Ca/Si5 1.5

C11 77.60 116.95 169.15 148.25 131.95 102.65 100.1
C12 35.90 45.83 54.48 63.25 48.30 41.68 26.85
C13 20.18 27.88 37.45 26.75 23.15 27.70 32.03
C14 0 0 �1.05 0 0 0 1.30
C15 0 0 �8.90 0 0 0 1.45
C16 3.08 0.3 2.7 6.63 �6.55 1.25 3.30
C22 104.5 126.10 169.95 138.35 128.30 125.05 45.70
C23 26.3 46.20 36.15 32.55 30.63 18.83 4.40
C24 0 0 3.55 0 0 0 7.35
C25 0 0 �11.75 0 0 0 �6.20
C26 �1.75 �14.93 �1.08 1.85 �10.98 �4.10 �3.18
C33 32.05 126.35 92.70 68.40 83.85 83.80 59.15
C34 0 0 2.60 0 0 0 �1.30
C35 0 0 �3.45 0 0 0 1.40
C36 3.03 �9.35 0.60 �1.73 �8.58 �3.38 0.07
C44 24.5 30.20 40.60 32.75 26.00 22.90 21.95
C45 �9.43 �11.10 0.43 �1.93 �8.35 �11.93 �1.73
C46 0 0 �5.48 0 0 0 �1.6
C55 14.65 20.75 17.85 25.65 21.75 23.25 21.00
C56 0 0 �1.85 0 0 0 2.73
C66 38.10 44.35 45.65 53.30 49.35 50.20 26.55

Table III. Partial Charges for Tobermorite (Hamid Struc-
ture) Ca/Si5 0.83 at the Interlayer Distance of 11 and 14 Å

Partial charges Siintra Caintra Cainter Ointra Ow Hw

Interlayer
distance 11 Å

12.24 11.66 11.72 �1.2 �0.88 10.44

Interlayer
distance 14 Å

12.24 11.66 11.72 �1.2 �0.8 10.4

The subindices ‘‘ inter,’’ ‘‘intra,’’ and ‘‘W’’ refer to interlayer, intralayer, and

water, respectively.
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layer interactions in Merlino structure is less surprising than
those in Hamid structures; and perhaps inconsistent with the
common perception.

There are, indeed, hinge deformation mechanisms in to-
bermorite (Hamid) with Ca/Si5 0.67 and 0.83 (but not for
Ca/Si5 1). However, unlike tobermorite 11 Å (Merlino), be-
cause there are no interlayer covalent bonds in Hamid struc-
tures, no particular atom acts as a hinge point. Instead a
chemical site in the interlayer space becomes the center for
such mechanism.

(3) Averaged Elastic Properties

To compare with measurements of elastic properties of C–S–H
gels, it is useful to characterize the single-crystal level elastic
properties. We use the Reuss–Voigt–Hill approximation39–41 to
calculate the bulk modulus, K, shear modulus, G, and average
Young’s modulus, E. One can also relate K and G to the plane-

stress modulus M, which is accessible for example by indenta-
tion techniques based on the Hertz theory contact solution.42,43

In the isotropic case, M relates to the bulk and shear modulus
(K,G) of the indented half-space by

M ¼ 4G
3K þ G

3K þ 4G
(3)

Table IV provides the values of the average elastic properties
for tobermorite and jennite. Accurate nanoindentation experi-
ments performed on C–S–H, indicates M�65 GPa for solid C–
S–H phases (Table III in Constantinides and Ulm,44 Table II in
Ulm et al.45). They are somewhat close toM values of tobermo-
rite 14 Å and jennite (M�56 GPa). This confirms earlier hy-
potheses7,46 that tobermorite 14 Å and jennite are among the
best C–S–H analogs. It is interesting to note that tobermorite 14
Å and jennite have almost the same values for all average elastic
properties. This is of some importance, because it has been

Interlayer Ca

E (GPa)

50 60 70 80 90 100 110 120 130

x

y

(a) (b)

Fig. 3. Tobermorite 11 Å (Hamid) Ca/Si50.83. (a) Fully relaxed unit cell. Pink pyramids are silicon tetrahedra; green ribbons are calcium polyhedra;
red circles are oxygen atoms and white circles are hydrogen atoms. (b) Young’s modulus in any arbitrary direction. Any point on the sphere with the unit
radius represents the tip of a unit vector, which is drawn from the center of the sphere (intersection of the three crystal planes). The surface of the sphere
covers all possible 3D arbitrary unit vectors.

E (GPa)E (GPa)

Hamid
Ca/Si=0.83

(b)(a)
Hamid
Ca/Si=0.67

(c)
Hamid
Ca/Si=1

E (GPa)

Fig. 4. Top views for tobermorite 11 Å (Hamid). (a) Tobermorite 11 Å (Hamid) Ca/Si5 0.67, (b) tobermorite 11 Å (Hamid) Ca/Si5 0.83, (c)
tobermorite 11 Å (Hamid) Ca/Si5 1. Any point on the spheres with the unit radius represents the tip of a unit vector, which is drawn from the center of
the spheres (intersection of the three crystal planes). In this figures, two of the crystal planes are perpendicular and are not seen. The surface of the
spheres cover all possible 3D arbitrary unit vectors.
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noted that the C–S–H gel at an early stage resembles tobermo-
rite 14 Å, while it resembles jennite after a period of months or
years.7,46 Thus, if there is any metastable structure in between
and consistent with the C–S–H thermodynamic equilibrium,
it may have the same average elastic properties as these two
minerals.

Having the atomic coordinates for each deformation, we can
compute the average directional bond strain in Ca–O, Si—O,
and O–H in each of X, Y, and Z directions. Figure 6 shows that
average directional bond strains have following common char-
acteristics:

First, in all crystals under constant strain of 1%, Ca–O bond
strains are greater than Si–O bond strains, indicating that Si–O
bonds are much stronger than Ca–O bonds. Note that while the
total applied strain is 1%, each individual bond strain can in
general be larger than 1%. Second, for tobermorite 14 Å and
jennite, O–H strains are always greater than corresponding
strains in other minerals under study. This indicates a structural
role of O–H bonds in these two C–S–H analogs, which have
large amount of water molecules in the interlayer distance. The

large values of the O–H strains in jennite and tobermorite 14 Å
indicate that the water molecules act as a weak bridge in the
interlayer bond connecting adjacent layers, that is Si(OH)–H2O–
Si(OH). These water molecules are part of the crystal-chemistry
of the mineral and are not bulk water; that is, they are attached
to the layers and cannot freely move in the interlayer space.
This is analogous to the studies of state of water in Portland
cement pastes.47

V. Discussion and Conclusions

In the present work, using first-principles calculations we found
lattice parameters and elastic constants for two classes of com-
plex layered hydrated oxides, tobermorite family and jennite.
For tobermorite 14 Å, the large interlayer distance makes the
coulombic interlayer interactions relatively insignificant com-
pared with the iono-covalent intralayer interactions. In addition,
the existence of water molecules as well as Ca ions in the inter-
layer space shield the coulombic interlayer interactions. Thus as
expected, the interlayer direction is the softest direction.

By decreasing the interlayer distance to 11 Å, the long-range
coulombic interlayer interactions become comparable to the
iono-covalent intralayer interactions. In this case, the softest di-
rections are two inclined regions that form a hinge mechanism.
By quantifying total coulombic energy in the interlayer direction
for different isomorphs of tobermorite 11 Å (Hamid types), we
showed that adding Ca in the interlayer space shields the cou-
lombic interlayer interactions, and thus shifts the two inclined
soft regions toward a single straight interlayer direction.

In summary, in contrast to the common perception that lay-
ered materials are soft in layer direction, we found that this is
not the case if the interlayer distance is such that the long-range
coulombic interlayer interactions are comparable to the covalent
intralayer interactions. However, this is not the only require-

E (GPa)

(a) (b)

hinge

Fig. 5. Tobermorite 11 Å (Merlino): (a) side view of : blue (or black) coupled arrows indicate the deformation mechanism along the softest Young’s
modulus. (b) A top view of directional Young’s modulus representing two equivalent inclined soft regions. The embedded lines on the sphere represent
the crystal directions in (a) and are not drawn to scale. Any point on the sphere with the unit radius represents the tip of a unit vector, which is drawn
from the center of the sphere (intersection of the three crystal planes). In this figure, two of the crystal planes are perpendicular and are not seen. The
surface of the sphere covers all possible 3D arbitrary unit vectors.

Table IV. Reuss–Voigt–Hill Average of the Elastic Constants
for the Tobermorite Family and Jennite Obtained from First-

Principles Calculation

Tobermorite

(Merlino)

Tobermorite

(Hamid, 11 Å) Jennite

14 Å 11 Å 9 Å

Ca/Si

5 1

Ca/Si

5 0.83

Ca/Si

5 0.67

Ca/Si

5 1.5

K (GPa) 35.91 66.65 71.42 60.84 58 52.68 31.83
G (GPa) 20.61 32.03 37.18 35.97 32.56 29.81 21.96
M (GPa) 55.64 90.59 103.03 96.31 88.44 80.77 56.26
E (GPa) 51.90 82.82 95.06 90.14 82.29 75.23 53.55
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ment, and the existence of interlayer ions and water molecules
may shield the coulombic interlayer interactions. In the case of
tobermorite 11 Å (Merlino type) and tobermorite 9 Å, the co-
valent interlayer bonds considerably strengthen the interlayer
direction, which lead to hinge (gliding) mechanism.

Finally, we characterized tobermorite family and jennite
based on their average elastic properties. By monitoring bond
length changes we showed that (i) Si–O bonds are much stronger
than Ca–O bonds. (ii) H2O molecules in tobermorite 14 Å and
jennite—compared with other studied minerals—have a struc-
tural role and are part of a Si(OH)–H2O–Si(OH) bridge in the
interlayer distance. The investigated class of materials and the
method and results reported here are of general interest for
chemically complex hydrated layered oxides such as C–S–H.

This opens the route to the study of elastic properties at the at-
omistic scale of other hydrated layered minerals such as clay
minerals that are of central importance in soil sciences or
Serpentines minerals involved in earth-quake mechanisms and
more generally in tectonophysics.

Last, the results presented here may also serve as a bench-
mark for validation of empirical force fields commonly em-
ployed in atomistic investigations of core properties of complex
hydrated oxides.
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Ab Initio Study,’’ Eur. J. Mineral, 101127 (2009).

23S. A. Churakov, ‘‘Hydrogen Bond Connectivity in Jennite from Ab Initio
Simulations,’’ Cem. Concr. Res., 38, 1359–64 (2008).

24P. Hohenberg and W. Kohn, ‘‘Inhomogeneous Electron Gas,’’ Phys. Rev. B,
136, 71–84 (1964).

25W. Kohn and L. J. Sham, ‘‘Seld-Consistent Equations Including Exchange
and Correlation Effects,’’ Phys. Rev. A, 140, 1133–8 (1965).

26D. Vanderbilt, ‘‘Self-Consistent Pseudopotentials in a Generalized Eigenvalue
Formalism,’’ Phys. Rev. B, 41, 7892–5 (1990).

27S. Baroni, A. Dal Corso, S. de Gironcoli, and P. Giannozzi, http://
www.pwscf.org

Fig. 6. Average bond strains in Ca–O, Si—O, and O–H for different
C–S–H crystals. Applied strain on all crystals is 0.01: (a) average bond
strains in X direction; (b) average bond strains in Y direction; (c) average
bond strains in Z direction. In all figures the bar symbols indicate the
positive error.

October 2009 First-Principles Study of Elastic Constants and Interlayer Interactions 2329



28H. Nielson and R. M. Martin, ‘‘First-Principle Calculations of Stress,’’ Phys.
Rev. Lett., 50, 697–700 (1983).

29H. Yao, L. Ouyang, and W.-Y. Ching, ‘‘Ab initio Calculation of Elastic Con-
stants of Ceramic Crystals,’’ J. Am. Ceram. Soc., 90, 3194–204 (2007).

30Y. Le Page and P. Saxe, ‘‘Symmetry-General Least-Sqaure Extraction of
Elastic Data for Strained Materials from ab initio Calculations of Stress,’’ Phys.
Rev. B, 65, 104104 (2002).

31V. R. Saunders, R. Dovesi, C. Roetti, R. Orlando, C. M. Zicovich-Wilson,
N. M. Harrison, K. Doll, B. Civalleri, I. J. Bush, Ph. D’Arco, and M. Llunell,
Crystal06, User’s Manual, University of Torino (2006). http://www.crystal.unito.it

32M. Corno, C. Busco, B. Civalleri, and P. Ugliengo, ‘‘Periodic ab initio Study
of Structural and Vibrational Features of Hexagonal Hydroxyapatite Ca10
(PO4)6(OH)2,’’ Phys. Chem. Chem. Phys., 8, 2464–72 (2006).

33W. Kohn, Y. Meir, and D. E. Makarov, ‘‘Van der Waals Energies in Density
Functional Theory,’’ Phys. Rev. Lett., 80, 4153–6 (1998).

34H. Rydberg, M. Dion, N. Jacobson, E. Schroder, P. Hyldgaard, S. I. Simak,
D. C. Langreth, and B. I. Lundqvist, ‘‘Van der Waals Density Functional for
Layered Structures,’’ Phys. Rev. Lett., 91, 126402 (2003).

35Jmol: an open-source Java viewer for chemical structures in 3D. http://
www.jmol.org/

36J. F. Nye, Physical Properties of Crystals. Oxford University Press, Oxford:
England, 1957.

37H. J. Monkhorst and J. D. Pack, ‘‘Special Points for Brillouin-Zone Integra-
tions,’’ Phys. Rev. B, 13, 5188–92 (1976).

38R. J.-M Pellenq and H. VanDamme, ‘‘WhyDoes Concrete Set: The Nature of
Cohesion Forces in Hardened Cement Based Materials,’’ MRS Bull., 319–23
(2004).

39W. Voigt, Lehrbuch der kristallphysik. Taubner, Leipzig, 1928.
40A. Reuss and Z. Angew, ‘‘Berchung der fiessgrenze von mischkristallen auf

grund der plastiziatsbedingung fur einkristalle,’’ Math. Mech., 9, 55–8 (1929).
41R. Hill, ‘‘The Elastic Behavior of a Crystalline Aggregate,’’ Proc. Phys. Soc.

Lond., 65, 350–4 (1952).
42L. A. Galin, Contact Problems in Theory of Elasticity. Gostekhizdat, Moscow,

1953.
43I. N. Sneddon, ‘‘The Relation Between Load and Penetration in the Axisym-

metric Boussinesq Problem for a Punch of Arbitrary Profile,’’ Int. J. Eng. Sci., 3,
47–57 (1965).

44G. Constantinides and F.-J. Ulm, ‘‘The Nanogranular Nature of C–S–H,’’
J. Mech. Phys. Sol., 55, 64–90 (2007).

45F.-J. Ulm, M. VanDamme, C. Bobko, J. A. Ortega, K. Tai, and C. Ortiz,
‘‘Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete,
None, and Shale,’’ J. Am. Ceram. Soc., 90, 2677–92 (2007).

46J. J. Chen, J. J. Thomas, H. F. W. Taylor, and H. M. Jenning, ‘‘Solubility and
Structure of Calcium Silicate Hydrate,’’ Cem. Concr. Res., 34, 1499–519 (2004).

47J. J. Thomas, S. A. FitzGerlad, D. A. Nuemann, and R. A. Livingston, ‘‘State
of Water in Hydrating Tricalcium Silicate and Portland Cement Pastes as
Measured by Quasi-Elastic Nuetron Scaterring,’’ J. Am. Ceram. Soc., 84, 1811–6
(2001). &

2330 Journal of the American Ceramic Society—Shahsavari et al. Vol. 92, No. 10


